22 research outputs found

    Quantum Impurity in a Nearly Critical Two Dimensional Antiferromagnet

    Full text link
    We describe the spin dynamics of an arbitrary localized impurity in an insulating two dimensional antiferromagnet, across the host transition from a paramagnet with a spin gap to a Neel state. The impurity spin susceptibility has a Curie-like divergence at the quantum-critical coupling, but with a universal, effective spin which is neither an integer nor a half-odd-integer. In the Neel state, the transverse impurity susceptibility is a universal number divided by the host spin stiffness (which determines the energy cost to slow twists in the orientation of the Neel order). These, and numerous other results for the thermodynamics, Knight shift, and magnon damping have significant applications to experiments on layered transition metal oxides.Comment: 12 pages, 3 figures; Additional details and results are in cond-mat/991202

    Power Aware Routing for Sensor Databases

    Full text link
    Wireless sensor networks offer the potential to span and monitor large geographical areas inexpensively. Sensor network databases like TinyDB are the dominant architectures to extract and manage data in such networks. Since sensors have significant power constraints (battery life), and high communication costs, design of energy efficient communication algorithms is of great importance. The data flow in a sensor database is very different from data flow in an ordinary network and poses novel challenges in designing efficient routing algorithms. In this work we explore the problem of energy efficient routing for various different types of database queries and show that in general, this problem is NP-complete. We give a constant factor approximation algorithm for one class of query, and for other queries give heuristic algorithms. We evaluate the efficiency of the proposed algorithms by simulation and demonstrate their near optimal performance for various network sizes

    Medians and Beyond: New Aggregation Techniques for Sensor Networks

    Full text link
    Wireless sensor networks offer the potential to span and monitor large geographical areas inexpensively. Sensors, however, have significant power constraint (battery life), making communication very expensive. Another important issue in the context of sensor-based information systems is that individual sensor readings are inherently unreliable. In order to address these two aspects, sensor database systems like TinyDB and Cougar enable in-network data aggregation to reduce the communication cost and improve reliability. The existing data aggregation techniques, however, are limited to relatively simple types of queries such as SUM, COUNT, AVG, and MIN/MAX. In this paper we propose a data aggregation scheme that significantly extends the class of queries that can be answered using sensor networks. These queries include (approximate) quantiles, such as the median, the most frequent data values, such as the consensus value, a histogram of the data distribution, as well as range queries. In our scheme, each sensor aggregates the data it has received from other sensors into a fixed (user specified) size message. We provide strict theoretical guarantees on the approximation quality of the queries in terms of the message size. We evaluate the performance of our aggregation scheme by simulation and demonstrate its accuracy, scalability and low resource utilization for highly variable input data sets

    Impurity spin dynamics in 2D antiferromagnets and superconductors

    Full text link
    We discuss the universal theory of localized impurities in the paramagnetic state of 2D antiferromagnets where the spin gap is assumed to be significantly smaller than a typical exchange energy. We study the impurity spin susceptibility near the host quantum transition from a gapped paramagnet to a Neel state, and we compute the impurity-induced damping of the spin-1 mode of the gapped antiferromagnet. Under suitable conditions our results apply also to d-wave superconductors.Comment: 2 pages, 1 fig. Proceedings of the M2S-HTSC-VI conference, Houston 2000, submitted to Physica C. More details can be found in cond-mat/991202

    A1: A Distributed In-Memory Graph Database

    Full text link
    A1 is an in-memory distributed database used by the Bing search engine to support complex queries over structured data. The key enablers for A1 are availability of cheap DRAM and high speed RDMA (Remote Direct Memory Access) networking in commodity hardware. A1 uses FaRM as its underlying storage layer and builds the graph abstraction and query engine on top. The combination of in-memory storage and RDMA access requires rethinking how data is allocated, organized and queried in a large distributed system. A single A1 cluster can store tens of billions of vertices and edges and support a throughput of 350+ million of vertex reads per second with end to end query latency in single digit milliseconds. In this paper we describe the A1 data model, RDMA optimized data structures and query execution

    Intermediate temperature dynamics of one-dimensional Heisenberg antiferromagnets

    Full text link
    We present a general theory for the intermediate temperature (T) properties of Heisenberg antiferromagnets of spin-S ions on p-leg ladders, valid for 2Sp even or odd. Following an earlier proposal for 2Sp even (Damle and Sachdev, cond-mat/9711014), we argue that an integrable, classical, continuum model of a fixed-length, 3-vector applies over an intermediate temperature range; this range becomes very wide for moderate and large values of 2Sp. The coupling constants of the effective model are known exactly in terms of the energy gap above the ground state (for 2Sp even) or a crossover scale (for 2Sp odd). Analytic and numeric results for dynamic and transport properties are obtained, including some exact results for the spin-wave damping. Numerous quantitative predictions for neutron scattering and NMR experiments are made. A general discussion on the nature of T>0 transport in integrable systems is also presented: an exact solution of a toy model proves that diffusion can exist in integrable systems, provided proper care is taken in approaching the thermodynamic limit.Comment: 38 pages, including 12 figure

    Quantum impurity dynamics in two-dimensional antiferromagnets and superconductors

    Full text link
    We present the universal theory of arbitrary, localized impurities in a confining paramagnetic state of two-dimensional antiferromagnets with global SU(2) spin symmetry. The energy gap of the host antiferromagnet to spin-1 excitations, \Delta, is assumed to be significantly smaller than a typical nearest neighbor exchange. In the absence of impurities, it was argued in earlier work (Chubukov et al. cond-mat/9304046) that the low-temperature quantum dynamics is universally and completely determined by the values of \Delta and a spin-wave velocity c. Here we establish the remarkable fact that no additional parameters are necessary for an antiferromagnet with a dilute concentration of impurities, n_{imp} - each impurity is completely characterized by a integer/half-odd-integer valued spin, S, which measures the net uncompensated Berry phase due to spin precession in its vicinity. We compute the impurity-induced damping of the spin-1 collective mode of the antiferromagnet: the damping occurs on an energy scale \Gamma= n_{imp} (\hbar c)^2/\Delta, and we predict a universal, asymmetric lineshape for the collective mode peak. We argue that, under suitable conditions, our results apply unchanged (or in some cases, with minor modifications) to d-wave superconductors, and compare them to recent neutron scattering experiments on YBCO by Fong et al. (cond-mat/9812047). We also describe the universal evolution of numerous measurable correlations as the host antiferromagnet undergoes a quantum phase transition to a Neel ordered state.Comment: 36 pages, 12 figures; added reference
    corecore